

Water Cooled Screw Chiller

Midea Building Technologies Division

Midea Group

Add.: Midea Headquarters Building, 6 Midea Avenue, Shunde, Foshan, Guangdong, China Postal code: 528311

mbt.midea.com www.midea-group.com

replace products without prior notification or public announcement. Midea is constantl developing and improving its products.

2023

MAKE A BEAUTIFUL TOMORROW

Midea MBT

Midea MBT(Midea Building Technologies) is a key division of the Midea Group, a leading provider of comprehensive solutions of intelligent building, involving energy sources, elevators, control systems, and heating, ventilation & air conditioning. Midea MBT has continued with the tradition of innovation upon which it was founded and emerged as a global leader in the HVAC and building management industry. A strong drive for advancement has resulted in an extensive R&D department that has placed Midea MBT at the forefront of a competitive -edge. Through these independent projects and joint-cooperation with other global enterprises, Midea has supplied thousands of innovative solutions to customers worldwide.

2001

The R134a (LC) series centrifugal

FORTUNE GLOBAL 2022

Screw/Scroll Chillers and AHU/FCU. MBT Hefei: 11 product lines focusing on VRF, Chillers and Heat Pump Water Heaters. Clivet S.p.A: 50,000m2 workshop in Feltre and Verona, covering products such as ELFO system, hydronic, WHLP, packaged, split and close control and so on. 2015 · Launched the inverter 2022 direct-drive centrifugal chiller and magnetic Launched the bearing centrifugal chiller evaporative cooling An international strategic scroll chiller platform has brought 2019 Midea Group, Carrier **Corporation and** Launched the Midea **Chongqing General** self-developed **Industry Group together in** magnetic bearing the chiller business centrifugal chiller 2017 Developed the large capacity air cooled scroll

MBT Shunde: 38 product lines focusing on VRF, Split Products, Heat Pump Water Heaters and AHU/FCU.

MBT Chongging: 14 product lines focusing on Water Cooled Centrifugal/Screw/Scroll Chillers, Air Cooled

Several production bases are situated on Shunde, Chongqing, Hefei, and Italy.

Acquired 80% stake in Clivet

2008 chiller was named as a key national product Developed the **Smart Star** new-generation 2004 semi-hermetic centrifugal chiller **Acquired MGRE** entered the chiller industry Won the first Midea 1999 centrifugal chiller project **Entered the MBT field** overseas 2006 Launched the first VFD (Variable Frequency Drive) centrifugal chiller

2020-2021

 Acquired the Chinese national brand Linvol Elevator and entered the elevator industry Launched the inverter air cooled screw chiller (free cooling)

MBT Learning Academy

04

MBT Learning Academy

Objective

MBT Learning Academy aims to provide training to the sales personnel as well as technical personnel in order to increase the utilization for your MBT equipment. Once you have purchased equipment from MBT, taking care of the equipment is topmost priority. MBT Learning Academy offers training courses to learn firsthand from the manufacturer what it takes to get the best out of your MBT product. The goal of MBT Learning Academy is to provide product specific training, safe work procedures and expertise in carrying out the installation and maintenance of MBT products as well as teaching the main selling points in order to help the sales people sell the MBT products with ease.

Training Centers

Our world class training centers provide knowledge and skills necessary to efficiently deploy MBT technologies.

The training centers include dedicated laboratories to provide hands-on experiences with various systems, components and controls to refresh and enhance the skills of your sales, design and installation and service teams. Right now we operate our trainings from the below two locations:

1. MBT Training Center

Address: MBT Training Center, 2nd Floor, Building 6, Midea Global Innovation Center, Beijiao, Shunde, Foshan, China Pin-528311

The Midea MBT Training Center is situated 70 kilometers from Baiyun Guangzhou International Airport.

Products: VRF, M thermal

2. Chongqing Midea Training Center

Address: No. 15, Qiangwei Road, Nan'an District, Chongqing, China

Chongqing Midea Training Center is 35 kilometers from Chongqing International Airport.

Products: Centrifugal Chiller, Screw/Scroll Chiller and Terminals

VRF training

M thermal training

Chiller training

Global Technical Trainings

The training courses by MBT Learning Academy are divided into the following two categories with different targeted audiences for each.

Design and Application Trainings: The design and application trainings for various products are basically for the sales personnel selling MBT products in order to give them basic understanding about the main features. The trainings are conducted on a global level inviting sales engineers, technical engineers, consultants and project designers from different parts of the

After Sales- Service Trainings: These trainings are dedicated for the After Sales/ Service personnel in order for them to better carry out the installation, commissioning and maintenance of MBT products. Technical person and engineers from different parts of the world are invited to take part in these trainings.

Online Trainings: The trainings to the Global customers can also be done online with the help of Team and Midea Meeting software. This way, the customers do not need to be physically present for the training. Amid the COVID-19 pandemic, MBT Learning Academy has conducted a lot of online trainings. The training videos are available on the TSP system and can be downloaded by using QR codes.

Products: VRF, M thermal, Chillers and Terminals

Highly Skilled Trainers: The trainers for various courses by MBT Learning Academy are expert people with vast experiences in their field. Most of them have a deep insight about the global HVAC market and help the attendees to better understand the MBT products.

Training Certificates:

The attendees for Global trainings are provided a training certificate highlighting the courses discussed in the training, signed by Mr. Henry Cheng, General Manager of MBT Overseas Sales Company.

Registration:

You can contact your respective Midea contact point to provide you with the complete schedule about the global technical trainings as well as how to register for these trainings.

For further enquiries about the Global Trainings conducted by MBT Learning Academy, please send email at the following email address: peeyush@midea.com

Midea Global Spare Parts Center

Mexico

Brazil

The global spare parts center provides high quality and fast spare parts supply. Midea online system (https://tsp.midea.com) can query and purchase spare parts with one click, further shortening the supply time of spare parts.

The " 2 (HQ Spare parts center) + 1 (Regional Spare parts center) + 1 (Country Spare parts inventory)" Spare Parts Layout can ensure the timely supply of global after-sales spare parts.

06

Midea Global Spare Parts Center

08

Technical Support Platform (TSP)

TSP is a platform for customers to provide professional technical support. Through TSP, you can inquire product information, documentation, spare parts and troubleshooting, initiate technical questions and quality complaint process, and also support self-service spare parts order.

Website address: https://tsp.midea.com/

My order

Inquire spare parts from exploded view and place spare parts order directly in TSP.

Document inquiry and download

View or download product technical documentation online, such as catalogs, images, training PPTs, etc.

Technical inquiry & FAQ

Initiate technical questions online, and our technicians answer them online in time. Find a quick solution in the FAQ.

Troubleshooting

Query the error code and solution by SN, model name, error code or product type.

Complain

Initiate the product quality complaint process online, and our after-sales engineers handle related complaints in time.

Mobile Intelligence Service App (MISA)

MISA is the mobile terminal of TSP, with the same functions as TSP. The mobile service makes technical support more timely and convenient.

https://link.midea.com

FAQ

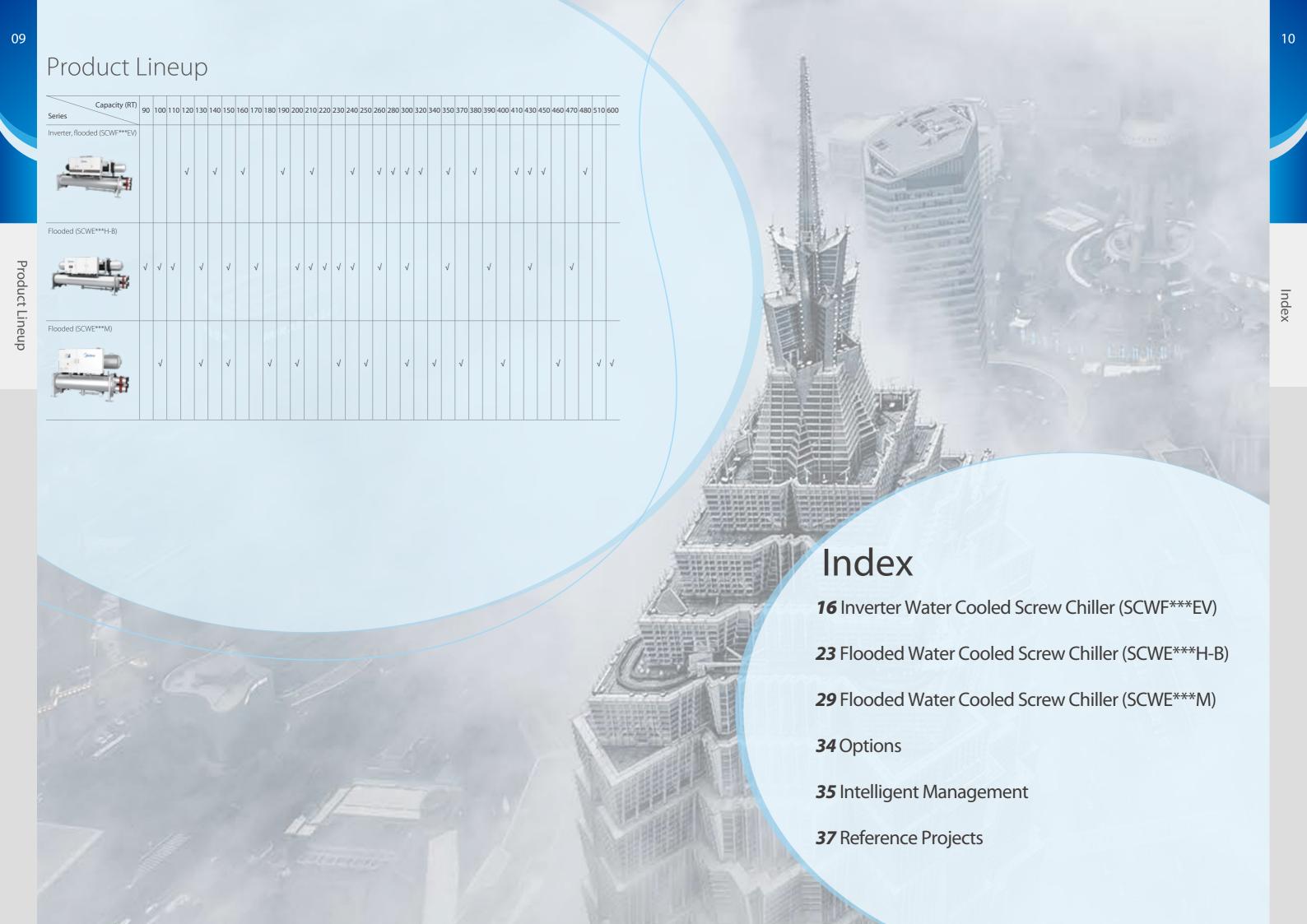
Complain

Technical Enquiry

Trouble shooting

Search product manuals

Spare Parts list



Thank you very much for your attention and advice

Download

Scan above to download the mobile app

Features

AHRI Certified

The full series of products are AHRI certified.

Certified in accoordance with the AHRI Water-Cooled Water-Chilling and Heat Pump Water-Heating Packages Using Vapor Compression Cycle Certification Program, which is based on AHRI Standard 500/590 (I-P) and AHRI Standard 551/591 (SI). Certified units may be found in AHRI Directory at www.ahridirectory.org

Enclosed Motor Design

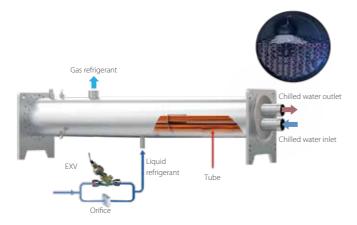
- * The motor is set at the compressor gas inlet and the adopted refrigerant cooling method works together with the unique inlet flow path design to ensure full cooling of the motor. The motor does not send out heat to the equipment room, so the heat dissipation of the chiller does not need to be considered for ventilation of the equipment room.
- The compressor motor adopts large capacity design and the motor directly drives the rotor to achieve very high efficiency.

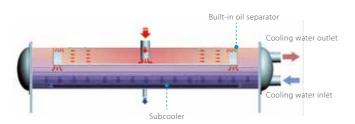
Flooded Evaporator

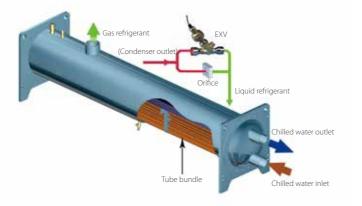
High efficiency flooded evaporator, high heat exchange efficiency.

The water box at both ends can be disassembled to facilitate maintenance.

Optimized design of the refrigerant distributor can distribute refrigerant evenly, optimize the temperature field and improve the evaporation temperature, so as to improve the operating efficiency.

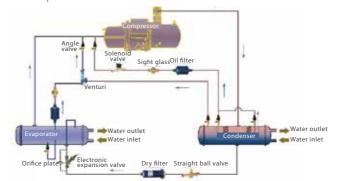

Optimized design of the baffle plate to avoid the compressor suction with liquid, improving the reliability of the unit.

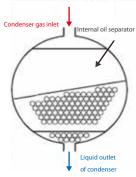

New Condenser


- * It adopts the double-side reinforced condenser tube to optimize the tube bundle arrangement design in the
- The unique design of the built-in oil separator helps address the problem of lubricating oil separation.
- The product optimizes the subcooler design, improves the supercooling temperature and reduces the pressure loss of subcooler, improving heat exchange performance efficiency.
- This product implements uniform gas transmission without any heat transmission blind spots.

Accurate Cooling Capacity Control

- * The unit features an electronic expansion valve and orifice plate to control the refrigerant for the evaporator and the water temperature accurately.
- The electronic expansion valve ischaracterized by quick response, rapid regulation and a large capacity adjust range.





Reliable Oil System

Midea water cooled screw chiller has an oil circuit control system that adopts leading technology, which ensures stable operation of the unit.

14

Water Cooled Screw Chiller

Advanced oil control system

Built-in three-stage oil separator for the compressor

Built-in oil separator for the condenser

Oil supply

This system features a differential pressure-type oil supply. All the moving parts in the compressor can stay well lubricated without an external oil pump.

Oil return

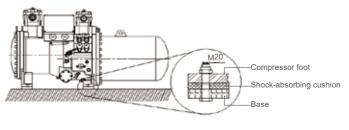
- * The first oil separation: The compressor is provided with a three-stage oil separator to ensure low oil content.
- * The second oil separation: The built-in high efficiency oil separator for the condenser controls the oil separation efficiency to a value above 99.99%, enabling the system to realize normal oil return under both partial load and full load, ensuring reliable and stable operation of the system and increasing the unit operating range.
- Double oil return system: This system adopts oil return through oil separation and Venturi injection. Oil return is implemented through the Venturi tube injection of high pressure gas and oil is not stored in the evaporator. An oil heater is set in the unit. The control system preheats the lubricating oil according to the unit's status to maintain optimal viscosity, optimizing the lubrication function. The external oil filter can be replaced easily.

Multiple Guarantees

Intelligent control of unit safety

The system monitors the unit parameter's changing trends and progressively adjusts the operating status of the unit to ensure

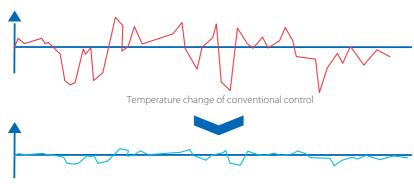
Powerful protection function for improved safety


The unit is provided with powerful protection measures to improve operation safety and reliability.

Strict factory test

All the units have undergone strict testing before delivery. Only the water pipe and power supply need to be connected during installation.

Quiet Operation


- The sound level is as low as 65 dB(A) when the unit operates with a partial load.
- * A standard shock-absorbing cushion is configured between the compressor foot and the metal support, achieving a good damping effect.
- * The built-in discharge muffler for the compressor cuts off transmission from the sound source.

Built-in discharge muffler design for compressor

Intelligent Control

Temperature change in prospective control

- Intelligent load control: Real-time load changes are predicted according to historical data and the real-time load is prospectively revised to avoid frequent fluctuations in the unit water temperature.
- Safe and intelligent unit control: The system monitors the trends of change in the unit's parameters and adjusts the operating status of the unit as necessary to ensure safe operation.
- Intelligent failure response: When the unit fails, in addition to executing the corresponding protective measures, the fault parameters are recorded for manual inspection and troubleshooting.

Interface Display

Controller: MIC

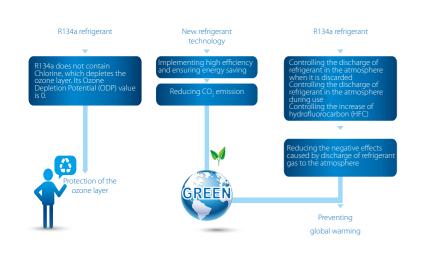
Interface display: 7-inch touch screen

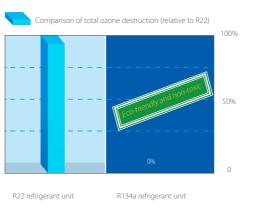
Communication interface: RS485

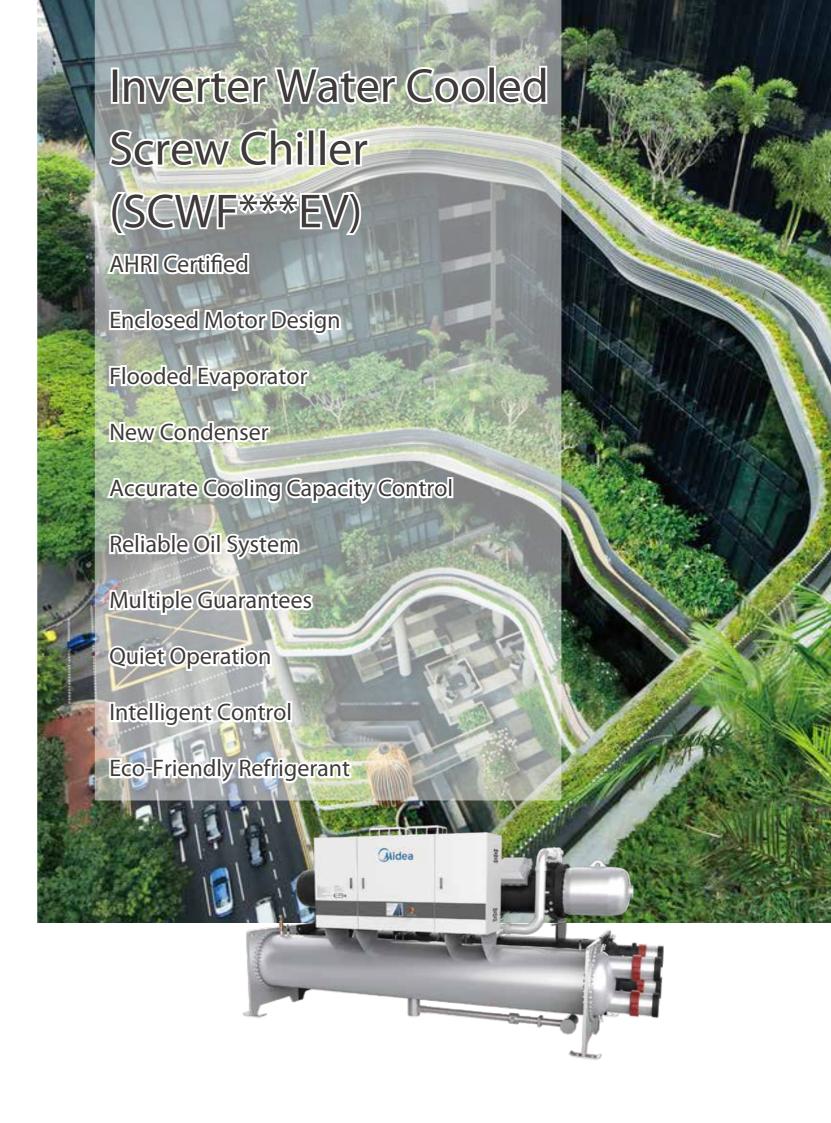
Communication protocol: Modbus-RTU

Protection measures: more than 20 protection

measures including the power supply, compressor,

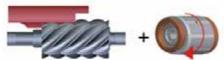

pressure and temperature.




Note: The interface and display content vary with each model. Please refer to the actual product.

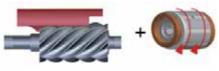
Eco-Friendly Refrigerant

R134a eco-friendly refrigerant achieves high cooling efficiency, without depleting the ozone layer. The refrigerant complies with the Montreal Protocol.



Inverter Water Cooled Screw Chiller (SCWE***EV)

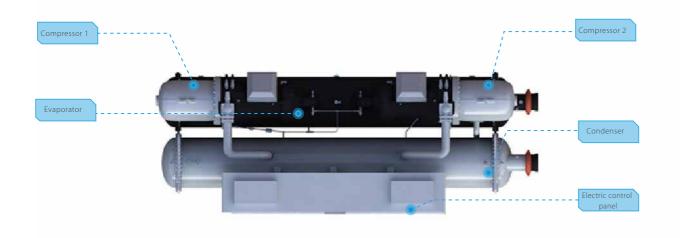
Vi Optimizing Inverter Technology of Midea's Independently-developed Inverter Twin Screw


Midea's independently-developed volume ratio optimization control technology integrates the characteristic curves of a compressor, inverter, motor and maximizes the performance and reliability of the inverter screw compressor. The maximum isentropic efficiency is 76%, far higher than other adjustment methods.

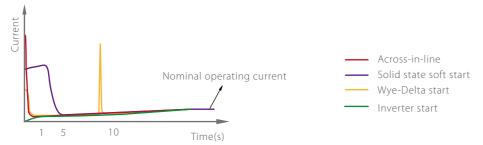
Loading

The motor speed increases and the slide valve looks for the best Vi position. The built-in algorithm then analyzes the operating parameters online, optimizes to adjust the slide valve position, motor speed and first lifts the slide valve. Then, the motor speed matches the load accurately.

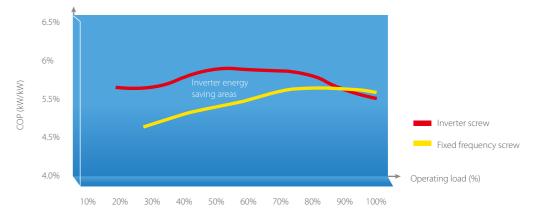
The motor slows and the slide valve looks for the best Vi position. The built-in algorithm then reduction analyzes the operating parameters online, optimizes to adjust the position of the slide valve, motor speed and first lowers the slide valve. Then the slide valve assists in energy regulation.



position. The motor stops after its speed reaches the minimum setting value.


Parallel Dual Compressor Design

The dual-compressor unit is designed with the parallel system of double compressors and the total heat exchange area is used to greatly improve the operation efficiency when the single compressor operates. (Customization of non-parallel system accepted)


No Impact of the Power Grid

This product utilizes inverter start with a smooth starting current of less than the Wye-Delta starting current, without any current impact, which prolongs the service life of motor.

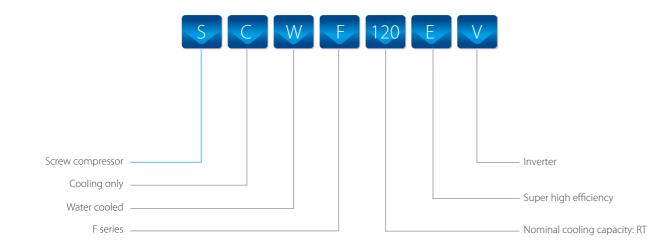
Energy Saving Principle of Inverter Adjust

The inverter screw unit regulates the cooling capacity by reducing the frequency. The COP of the partial load is better than the fixed frequency unit, which greatly enhances the energy efficiency.

Note: Let's use 7/32°C operating conditions as an example.

Accurate Control

Innovative swirl orifice plate throttling technology:


- * The flow resistance increases when the gas content of refrigerant is high before the orifice plate, which greatly improves the cooling capacity attenuation caused by hot gas bypass under the partial load.
- * When the condensation pressure is low and the refrigerant in front of the orifice plate is liquid, the liquid flow rate can be accelerated to increase the liquid pply.

Product Structure Electric control panel •— 7-inch colorful touch screen • The compressor screw rotor adopts a Flexible sinking design has made a Providing auto-diagnosis, Easy-to-read unit status; new profile. Enclosed motor design breakthrough in the single plane adjustment, security protection, convenient to operate and and motor is cooled by refrigerant. shape, featuring a lively and futuristic remote control and other functions Midea . 11 Water inlet and outlet located n the same side This product features a double-sided Specially designed liquid Lifting hole retained to make Easy installation, cleaning and

Nomenclature

handling convenient

einforced high-efficiency condense

tube to further improve heat

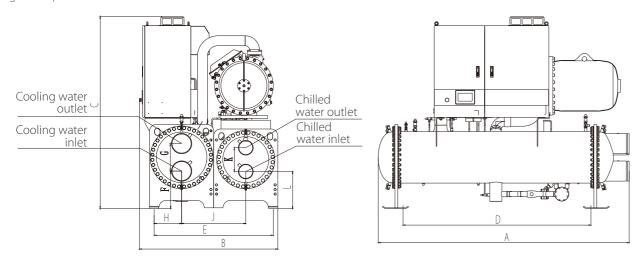
exchange efficiency

Specifications

			SCWF	120EV	SCWI	F140EV	SCW	F160EV	SCW	F190EV	SCWI	210EV	SCWF	-240EV	SCWI	F260EV	SCW	1 200L V
		RT	118			88.9		58.8		39.7		3.7	236			52.3		77.3
Cooling capacity		kW	418			88.5		58.3		57.2		6.3	83		88	37.1	97	74.9
Power input		kW	74.			1.59		2.62	-	11.1		9.5		8.7		47.0		63
COP		W/W	5.6			774		028		007		96	5.9			033		983
IPLV		W/W	8.6			983		314		043		23	9.2			868		901
		Qty	1			1	_	1	_	1			1			2		2
		Type						•			metic scre							
Compressor		Starting										rr compr						
		method									Inverter							
Capacity adjust range									Single co	mpresser	15%-1009	6, Dual co	mpressor	8%-1009	6			
Definent	Туре	/									R134a							
Refrigerant	Charge amount	kg	11	0	1	20	1	40	1	50	1	60	17	70	2	240	2	245
Power supply		-							-	38	0V-3Ph-50)Hz						
Compressor number			1#	#	1	#	1	1#		1#	1	#	1:	#	1#	2#	1#	2#
Rated current		A	121	.8		8.2		51.3	18	31.5		5.2	226	6.5	95.6	144.6	106.0	160.2
Max. operating current	t	A	154			06.1	_	06.1		28.3		5.8	272		154.3	228.3	154.3	228.3
Starting current		A		21.8		38.2		151.3	_	81.5		95.2		26.5	<95.6	<144.6	<106.0	<160
	Water flow	m³/h	64.			5.47		6.25		03.1		0.7		8.5		37.1		50.6
Evaporator	Pressure drop	kPa	40			9.0		1.9		9.5).9	40			2.7		4.8
	Water pipe connection	mm	DN			V150		V150		V150		1200		1200		V200		V200
	Water pipe connection Water flow	m³/h	81.			1.85		07.8		28.9		8.4		0.6		71.2		38.4
Condenser		kPa						7.2		0.7						7.7		0.2
Condenser	Pressure drop		50.			7.8						1.2	58			V200		V200
	Water pipe connection	mm	DN:			V150		N150		V200		1200		1200		430		430
Hate alternation	Length	mm	27			713		713	-	738		70		970				
Unit dimension	Width	mm	138			380		380	-	500	1	500		500		610		610
ci	Height	mm	199			996		996		096		196)96		163		163
Shipping weight		kg	247			952		007	_	270		31		172		910		945
Running weight		kg	262	20	3	112	3	177	3-	490	3.5	71	37	722	52	280	5	335
									_									
Model			SCWF:	300EV	SCWF	320EV	SCWF	F350EV	SCW	F380EV	SCWI	410EV	SCWF	430EV	SCWI	F450EV	SCW	F480EV
		RT	SCWF: 296.		SCWF			F350EV 42.4		F380EV 78.5		410EV		430EV 9.0		F450EV 42.8		F480EV 71.1
		RT kW		.5		1.5	34		37		40		42		44		47	
Model Cooling capacity Power input			296.	.5	31	1.5 95	34 12	42.4	31	78.5	40	9.0	42	9.0	1!	42.8	47	71.1
Cooling capacity		kW	296. 104	.1	31°	95 0.2	34 12 20	42.4 204	31 1: 22	78.5 331	40 14 23	9.0	42	9.0 609 52	1! 25	42.8 557	11	71.1 656
Cooling capacity Power input		kW	296. 104 174	.1 .1	31 10 18	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5	3: 1: 2: 6.	78.5 331 20.1	40 14 23 6.	9.0 138 9.5	42 ¹ 15 25 5.9	9.0 609 52	44 15 25 6.	42.8 557 57.7	4: 1: 2: 5.	71.1 656 76.6
Cooling capacity Power input COP		kW kW W/W	296. 104 174 5.98	.1 .1	31 10 18 6.0	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5 003	31 1. 22 6.	78.5 331 20.1 047	40 14 23 6.1 9.1	9.0 138 9.5	42 ¹ 15 25 5.9 9.5	9.0 09 52 985	44 1.5 2.5 6.1	42.8 557 57.7 043	4: 11 2: 5.	71.1 656 76.6
Power input COP IPLV		kW kW W/W W/W	296. 104 174 5.98 9.21	.1 .1	31 10 18 6.0 9.0	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5 003 513	31 1. 22 6.	78.5 331 20.1 047 603	40 14 23 6.1 9.1	9.0 138 9.5 004	42 ¹ 15 25 5.9 9.5	9.0 609 52 985 609	44 1.5 2.5 6.1	42.8 557 57.7 043 536	4: 11 2: 5.	71.1 656 76.6 .988
Power input COP IPLV		kW kW W/W W/W Oty Type Starting	296. 104 174 5.98 9.21	.1 .1	31 10 18 6.0 9.0	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5 003 513	31 1. 22 6.	78.5 331 20.1 047 603	40 14 23 6.9	9.0 138 9.5 004 555	42 ¹ 15 25 5.9 9.5	9.0 609 52 985 609	44 1.5 2.5 6.1	42.8 557 57.7 043 536	4: 11 2: 5.	71.1 656 76.6 .988
Power input COP IPLV Compressor		kW kW W/W W/W Oty Type	296. 104 174 5.98 9.21	.1 .1	31 10 18 6.0 9.0	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5 003 513	3: 1: 2: 6. 9.	78.5 3331 20.1 047 603 2	4(14 23 6.1 9.2	9.0 138 9.5 1004 1555 2	42 ^t 15 25 5.9 9.5	9.0 609 52 985 609	44 1! 25 6. 9.	42.8 557 57.7 043 536	4: 11 2: 5.	71.1 656 76.6 .988
Cooling capacity Power input COP		kW kW W/W W/W Qty Type Starting method	296. 104 174 5.98 9.21	.1 .1	31 10 18 6.0 9.0	1.5 95 0.2 76	34 12 20 6.0	42.4 204 00.5 003 513	3: 1: 2: 6. 9.	78.5 3331 20.1 047 603 2	40 14 23 6.1 9.: Inverter	9.0 138 9.5 1004 1555 2	42 ^t 15 25 5.9 9.5	9.0 609 52 985 609	44 1! 25 6. 9.	42.8 557 57.7 043 536	4: 11 2: 5.	71.1 656 76.6 .988
Cooling capacity Power input COP IPLV Compressor Capacity adjust range	Туре	kW kW W/W W/W Oty Type Starting	296. 104 174 5.98 9.21 2	.5 3 .1 37 3	31 ¹ 10 18 6.0 9.0 2	1.5 95 0.2 76 84	34 12 20 6.1 9.1	42.4 204 200.5 0003 513 2	3: 1. 2: 6. 9.	78.5 331 20.1 047 603 2	4(14 23 6.1 9 Inverter R134a	9.0 138 9.5 004 555 2	42 ^t 15 25 5.9 9.5 2	9.0 09 52 085 509 2	44 1! 25 6.1 9.	42.8 5557 57.7 043 536 2	4: 1: 2: 5. 9.	71.1 656 76.6 988 651 2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range	Type Charge amount	kW kW W/W W/W Qty Type Starting method	296. 104 174 5.98 9.21	.5 3 .1 37 3	31 10 18 6.0 9.0	1.5 95 0.2 76 84	34 12 20 6.1 9.1	42.4 204 00.5 003 513	3: 1. 2: 6. 9.	78.5 3331 20.1 047 603 2	4(14 23 6.1 9 Inverter R134a	9.0 138 9.5 1004 1555 2	42 ^t 15 25 5.9 9.5 2	9.0 609 52 985 609	44 1! 25 6.1 9.	42.8 557 57.7 043 536	4: 1: 2: 5. 9.	71.1 656 76.6 .988
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant		kW kW W/W W/W Qty Type Starting method	296. 104 174 5.98 9.21 2	.5 3 .1 37 3	31 ¹ 10 18 6.0 9.0 2	1.5 95 0.2 76 84	34 12 20 6.1 9.1	42.4 204 200.5 0003 513 2	3: 1. 2: 6. 9.	78.5 331 20.1 047 603 2	4(14 23 6.1 9 Inverter R134a	9.0 9.5 99.5 004 555 2	42 ^t 15 25 5.9 9.5 2	9.0 09 52 085 509 2	44 1! 25 6.1 9.	42.8 5557 57.7 043 536 2	4: 1: 2: 5. 9.	71.1 656 76.6 988 651 2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply		kW kW W/W W/W Qty Type Starting method	296. 104 174 5.98 9.21 2	.5 3 .1 37 3	31 ¹ 10 18 6.0 9.0 2	1.5 95 0.2 76 84	34 12 20 6.1 9.1	42.4 204 200.5 0003 513 2	3: 1. 2: 6. 9.	78.5 331 20.1 047 603 2	40 14 23 6.1 9. Inverter 8sser 15%-1 R134a	9.0 9.5 99.5 004 555 2	42 ^t 15 25 5.9 9.5 2	9.0 09 52 085 509 2	44 1! 25 6.1 9.	42.8 5557 57.7 043 536 2	4: 1: 2: 5. 9.	71.1 656 76.6 988 651 2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number		kW kW W/W W/W Qty Type Starting method	296. 104 174 5.98 9.21 2	5 3 3 .1 37 3	31 10 18 6.0 9.0 2	1.5 95 0.2 76 84 2	34 11 20 6.1 9.1	42.4 204 00.5 003 513 2	3: 1. 2: 6. 9. Single	78.5 3331 20.1 047 603 2	40 14 23 6.1 9.2 Inverter R134a 2 380V-3Ph-	9.0 9.5 90.4 555 2	42 ^t 15 25 5.9 9.5 2	9.0 609 52 985 609 2 2	44 1! 25 6.1 9.	42.8 5557 57.7 043 5336 2	4: 11 2: 5. 9.	71.1 656 76.6 .988 .651 2
Power input COP IPLV Compressor	Charge amount	kW kW W/W W/W Qty Type Starting method	296 104 174 5.98 9.21 2	.5 3 .1 37 3	31 10 186 6.0 9.0 2	1.5 95 0.2 76 84 2	34 11 20 6.0 9.1	42.4 204 200.5 000.3 513 2	3: 1. 2: 6. 9. Single	78.5 3331 20.1 047 603 2	40 14 23 6.1 9.2 Inverter sser 15%-1 R134a 2 380V-3Ph-	9.0 838 9.5 9004 555 2 00%, Dua 85 50Hz 2#	42 ^t 15 25 5.9 9.5 2 al compre	9.0 9.0 9.0 9.5 9.8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	44 1! 25 6.1 9.2	42.8 5557 043 536 2	4: 11 2: 5. 9.	71.1 656 76.6 988 651 2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current	Charge amount	kW kW w/w w/w Qty Type Starting method	296 104 174 5.98 9.21 2	55 3 3 31 1 	31 10 18 6.0 9.0 2 2 2 4 1# 147.2	1.5 995 30.2 76 84 2 2 30 2 4 147.2 228.3	34 12 20 6.4 9.5 2 1# 163.8 228.3	42.4 204 200.5 000.3 513 2 2 265 2# 163.8	3: 1. 2: 6. 9. Single	78.5 331 20.1 047 603 2 2 880 2# 179.8 228.3	40 14 23 6.1 9.2 Inverter 83897-3Ph- 1# 171.2	9.0 138 9.5 2004 5555 2 00%, Dua 85 50Hz 2# 220.0	42' 15 25 5,9 9,5 2 al compre	9.0 9.0 9.0 9.5 9.8 9.5 9.5 9.0 9.0 2 2 2 2 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3	44 1! 25 6.0 9. 100%	42.8 5557 57.7 043 5336 2	4: 1: 2: 5. 9.	771.1 6656 776.6 9988 6651 2 2 226.1 226.1
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current	Charge amount	kW kW W/W W/W Qty Type Starting method	296 104 174 5.98 9.21 2 250 1# 171.2 228.3	5 5 3 3 3 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	31 10 10 18 6.0 9.0 2 2 6 1# 147.2 228.3	1.5 995 30.2 776 884 2 2 300 2# 147.2 228.3 <147.2	2 1# 163.8 228.3 <163.8	42.4 204 200.5 000.3 513 2 265 24 163.8 228.3	3: 1. 2: 6. 9. Single 2 1# 179.8 228.3 <179.8	78.5 331 20.1 047 603 2 2 880 2# 179.8 228.3	40 14 23 6. 9. Inverter R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2	9.0 138 9.5 2004 5555 2 00%, Dua 85 50Hz 2# 220.0 272.6	42' 15 25 5,9 9,5 2 3l compre	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5	42.8 5557 67.7 043 5336 2 2 600 2# 210.5 272.6	4: 11 2: 5. 9. 1# 226.0 272.6 < 226.0	771.1 6656 776.6 9988 6651 2 2 226.1 226.1
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current	Charge amount	kW kW W/W W/W Qty Type Starting method	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2	5 3 3	31 100 181 181 181 181 181 181 181 181 18	1.5 95 0.2 76 84 2 2 30 4 147.2 228.3 <147.2	2 1# 163.8 228.3 <163.8	22.4 2004 200.5 2003 5113 2 265 2# 163.8 228.3 <163.8	3: 1. 2: 6. 9. Single 2 1# 179.8 228.3 <179.8	78.5 3331 20.1 047 6603 2 e compres 280 2# 179.8 228.3 <179.8	4(1-4) 6. 9. Inverter R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2	9.0 138 9.5 9.5 1004 5555 2 100%, Dual 85 50Hz 2# 220.0 272.6 < 220.0	42' 5.9 9.5 2 al compre	9.0 0.09 0.09 0.09 0.09 0.09 0.09 0.09	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5	42.8 5557 043 5336 2 2 000 2# 210.5 272.6 <210.5	4: 1: 2: 5. 9. 1# 226.0 272.6 <226.0	771.1 771.1 776.6 9988 6651 2 2 226.2 226.2 226.2 226.2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current	Charge amount	kW kW W/W W/W Qty Type Starting method	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2	5 3 31	311 100 186 6.0 9.0 2 2 1# 147.2 228.3 <147.2 166	1.5 995 0.2 776 884 2 2 300 2# 147.2 228.3 <147.2 9.2	2 1# 163.8 228.3 <163.8	22.4 2004 200.5 2003 5113 2 265 2# 163.8 228.3 <163.8	3: 1. 2: 6. 9. Single 2 1# 179.8 228.3 <179.8 20 7	78.5 3331 20.1 047 6603 2 2 880 2# 179.8 228.3 <179.8	4(1-4) 6. 9. Inverter R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2	9,0 338 9,5 004 5555 2 00%, Dual 85 50Hz 2# 220.0 272.6 <220.0 2.2	42' 5.9 9.5 2 al compre	9.0 0.09 0.09 0.09 0.09 0.09 0.09 0.09	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5	42.8 5557 043 5336 2 2 600 2# 210.5 272.6 <210.5	4: 1: 2: 5. 9. 1# 226.0 272.6 <226.0	771.1 77
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current	Charge amount t Water flow Pressure drop	kW kW w/w w/w Qty Type Starting method A A A A A	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4	5 3 31	311 100 186 6.0 9.0 2 2 2 1# 147.2 228.3 2417.2 166 63	1.5 995 0.2 776 884 2 2 147.2 228.3 <147.2 9.2 7	2 1# 163.8 228.3 <163.8 18 7. DN	22.4 2004 200.5 2003 5113 2 265 2# 163.8 228.3 <163.8 86.0 99.8	3: 3: 1. 2: 6. 9. Single 2. 1# 179.8 228.3 <179.8 20. 7	78.5 3331 20.1 047 6603 2 2 880 2# 179.8 228.3 <179.8	4(14 23 6. 9. Inverter R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2 7	9.0 338 9.5 9.5 9.5 9.5 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	42: 5.9 9.5 2 11# 185.7 245.8 <185.7 DN:	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5 7	42.8 5557 600 2# 210.5 272.6 <210.5 40.6 66.5	4: 1: 2: 5. 9. 1# 226.0 272.6 <226.0	771.1 771.1 776.6 776.6 9988 6651 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current Evaporator	Charge amount Water flow Pressure drop Water pipe connection	kW kW w/w w/w Qty Type Starting method A A A A A A MPa	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.6	5 3 3 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	311 100 9.00 22 1# 147.2 228.3 4147.2 166 63 DN:	1.5 95 0.2 76 84 2 147.2 228.3 <147.2 9.2 .7	2 1# 163.8 228.3 <163.8 18 7. DN	265 265 24 163.8 228.3 2163.8 228.3 2163.8 228.3 2163.8 228.3 2163.8	33 1 22 6. 9. Single 2 1# 179.8 228.3 <179.8 20 7 DN 21	78.5 3331 20.1 047 6603 2 e comprese 280 2# 179.8 228.3 <179.8 179.8 2179.8	44(14 23 6.) 9. Inverter R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2 7 DN 27	9,0 338 9,5 5004 5555 2 000%, Dual 85 50Hz 2# 220,0 272,6 <220,0 2.2 3.7 200	42: 5.9 9.5 2 11# 185.7 245.8 <185.7 DN:	9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5 24 7 DN	42.8 5557 600 2# 210.5 272.6 <210.5 40.6 66.5 1200	4: 11 2: 5. 9. 9. 1# 226.0 272.6 <226.0 2! 8 Dh	771.1 771.1 771.6 776.6 9988 6651 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current Evaporator	Charge amount Water flow Pressure drop Water pipe connection Water flow Pressure drop	kW kW w/w w/w Qty Type Starting method / kg A A A kPa mm m²/h kPa	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4 DN2	5 3 3 1	311 100 9.00 226 1# 147.2 228.3 4147.2 166 633 DN:2	1.5 95 0.2 76 84 2 147.2 228.3 <147.2 9.2 .7 2000	22 1# 163.8 228.3 <163.8 18 5 5	265 2# 163.8 228.3 <163.8 200.9 200.3	33 1 22 6. 9. Single 2 1# 179.8 228.3 <179.8 20 7 DN 22 5	78.5 78.5 3331 20.1 047 6603 2 2 2880 2# 179.8 228.3 <179.8 05.6 6.3 1200 66.8	44(14 23 6.) 9. Inverter 8sser 15%-1 8134a 2380V-3Ph- 1# 171.2 228.3 <171.2 7 DN 27	9,0 338 9,5 5004 5555 2 000%, Dual 85 50Hz 2# 220.0 272.6 <220.0 2.2 3.7 2000 7.8	42: 5.9 9.5 9.5 1	9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44 1! 25 6. 9. 100% 3 1# 210.5 272.6 <210.5 24 7 DN 36	42.8 5557 57.7 043 536 2 200 210.5 272.6 <210.5 40.6 6.5 4200 00.5	4: 11 2: 5. 9. 9. 1# 226.0 272.6 <226.0 2! 8 DN	771.1 771.1 771.6 776.6 9988 8651 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current Evaporator	Charge amount Water flow Pressure drop Water pipe connection Water flow Pressure drop Water pressure drop Water pressure drop	kW kW w/w Qty Type Starting method / kg A A A A A M Mm m³/h kPa mm	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4 DN2 201 38.3 DN2	5 3 3 1	311 100 188(8 189 189 189 189 189 189 189 189 189 18	1.5 95 50.2 76 84 2 147.2 228.3 <147.2 9.2 .7 2000	22 1# 163.8 228.3 <163.8 18 5 DN	265 2# 163.8 228.3 <163.8 86.0 9.8 81200 32.5 77.0 N200	33 1. 22 6. 9. Single 1# 179.8 228.3 <179.8 20 7 DN 25	78.5 78.5 3331 20.1 047 603 2 2 280 2# 179.8 228.3 <179.8 05.6 6.3 4200 66.8 8.4	44(99.0 338 99.5 5004 5555 2 000%, Dual 85 50Hz 2# 220.0 272.6 <220.0 2.2 3.7 200 7.8 2.0 200 200 200 200 200 200 200	42: 5.9 9.5 9.5 1	9.0 0.09 5.52 8.85 5.2 8.85 5.2 8.85 5.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	44 11: 25 6.1 9. 100% 31 1# 210.5 272.6 <210.5 26 7 DN 30 6 DN	42.8 5557 57.7 043 536 2 200 210.5 272.6 <210.5 40.6 65.5 8200 90.5 12.6 8200	4: 11 2: 5. 9. 9. 1# 226.0 272.6 < 226.0 DN 33: 6 DN	771.1 771.1
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current Evaporator Condenser	Charge amount Water flow Pressure drop Water pipe connection Water flow Pressure drop Water pipe connection Length	kW kW w/w Qty Type Starting method / kg A A A A A M M KPa mm mm	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4 DN2 201 38.3 DN2 443	5 3 3 31	311 100 188 6.0 6.0 9.0 2 2 6 1 # 147.2 228.3 DN: 211 DN: 444	1.5 995 0.2 76 884 2 147.2 228.3 <147.2 9.2 7.7 2000 330	2 1# 163.8 228.3 <163.8 18 5 DN 45	265 2# 163.8 228.3 <163.8 86.0 9.8 81200 32.5 77.0 81200 5500	33 1. 22 6. 9. Single 22 1# 179.8 228.3 <179.8 20 77 DN 25 5 DN 44	78.5 78.5 3331 20.1 047 603 2 2 280 2# 179.8 228.3 <179.8 05.6 6.3 4200 66.8 8.4 4200 500	44(14 25 6.) 9. Inverter sser 15%-1 R134a 2 380V-3Ph- 1# 171.2 228.3 <171.2 7 DN 27 6 DN 45	99.0 338 99.5 5004 5555 2 000%, Dual 85 50Hz 2# 220.0 272.6 <220.0 2.2 3.7 200 7.8 2.0 200 200 200 200 200 200 200	42: 5.9 9.5 9.5 1	9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44 1! 25 6.1 9.2 100% 3 1# 210.5 272.6 <210.5 7 DN 3C 6 DN	42.8 5557 67.7 043 5336 2 2 210.5 272.6 <210.5 40.6 6.5 N200 00.5 2.6 N200 500	4: 11 2: 5. 9. 1# 226.0 272.6 <226.0 2! 88 DN 3: 6 DN 4:	771.1 771.1
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current	Charge amount Water flow Pressure drop Water pipe connection Water flow Pressure drop Water pipe connection Length Width	kW kW w/w Qty Type Starting method / kg A A A A A A A A A A A A A A A A A A	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4 DN2 201 38.3 DN2 443	5 3 3 1 1/17 3 3 1 154.3 1 154.3 1 4 4 1 1 4 4 1 1 1 1 1 1 1	31 100 186 6.0 9.0 9.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 995 30.2 776 884 ? 147.2 228.3 <147.2 200 1.2 7 2000 300	24 1# 163.8 228.3 <163.8 18 77 DN 45 17	22.4 204 205 207 208 209 209 209 209 209 209 209 209	3: 1. 2: 6. 9. Single 2 2 1# 179.8 228.3 <179.8 20 DN 2: 5 DN 4. 1:	78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5	4(0 14 22 6.1 14 14 14 14 14 14 14 14 14 14 14 14 14	9.0 138 9.5 004 555 2 00%, Dua 85 50Hz 2# 220.0 272.6 <220.0 2.2 3.7 2200 7.8 2.0 200 600	15 5.9 9.5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.0 0.09 0.09 0.09 0.09 0.09 0.09 0.09	44 1! 25 6.1 9.2 100% 31 210.5 272.6 <210.5 27.6 0 DN 4!	42.8 5557 67.7 043 5336 2 2 210.5 272.6 <210.5 40.6 66.5 N200 00.5 12.6 N200 500 700	4: 11: 2: 5. 9. 1#: 226.0 272.6 <226.0 272.6 <226.0 DN 3: 6 DN 4:	771.1 771.1
Cooling capacity Power input COP IPLV Compressor Capacity adjust range Refrigerant Power supply Compressor number Rated current Max. operating current Starting current Evaporator Condenser	Charge amount Water flow Pressure drop Water pipe connection Water flow Pressure drop Water pipe connection Length	kW kW w/w Qty Type Starting method / kg A A A A A M M KPa mm mm	296 104 174 5.98 9.21 2 250 1# 171.2 228.3 <171.2 161 68.4 DN2 201 38.3 DN2 443	5 3 3 1	311 100 188 6.0 6.0 9.0 2 2 6 1 # 147.2 228.3 DN: 211 DN: 444	1.5 995 0.2 76 884 ? 147.2 228.3 <147.2 2200 1.2 7 2000 30 10 63	24 1# 163.8 228.3 <163.8 18 70 DN 45 17 21	265 2# 163.8 228.3 <163.8 86.0 9.8 81200 32.5 77.0 81200 5500	33: 1. 2: 6. 9. Single 22 1# 179.8 228.3 <179.8 20 DN 4. 1. 2.	78.5 78.5 3331 20.1 047 603 2 2 280 2# 179.8 228.3 <179.8 05.6 6.3 4200 66.8 8.4 4200 500	4(14 22 6.1 9.2 Inverter 8134a 2 380V-3Ph- 1# 171.2 228.3 <171.2 27 DN 27 6 DN 49 49	99.0 338 99.5 5004 5555 2 000%, Dual 85 50Hz 2# 220.0 272.6 <220.0 2.2 3.7 200 7.8 2.0 200 200 200 200 200 200 200	1# 185.7 245.8 <185.7 DN: 29 61 DN: 45 177 21	9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	44 1! 25 6.1 100% 3 1# 210.5 272.6 < 210.5 24 DN 30 6 DN 4! 1: 2 1: 2 1: 2 1: 2 1: 2 1: 2 1: 2 1:	42.8 5557 67.7 043 5336 2 2 210.5 272.6 <210.5 40.6 6.5 N200 00.5 2.6 N200 500	4: 11 2: 5. 9. 1# 226.0 272.6 <226.0 DN 3: 6 DN 4:	771.1 771.1

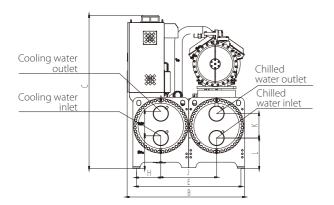
20

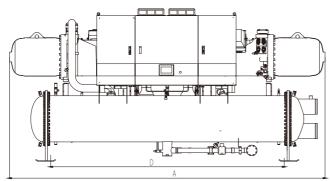
Inverter Water Cooled Screw Chiller (SCWF***EV)


equalization plate to optimize the

temperature field and achieve optimal heat exchange efficiency

- 1. Performance and efficiency are based on AHRI 550/590-2018. Evaporator conditions: water inlet= 54° F (12.22°C), water outlet= 44° F (6.67°C), fouling factor=0.00010h-ft²-°F/Btu (0.0176m². °C/kW); Condenser conditions: water inlet= 85° F (29.44°C), water outlet= 94.3° F (34.61°C), fouling factor=0.00025h-ft²-°F/Btu (0.0440m². °C/kW).
- 2. The design's max working pressure for both the evaporator and condenser are 1.0MPa, but higher pressure can be customized if required.
- 3. As a result of the continuous improvement of the product, the above parameters may be changed, please refer to the software selection and the actual product


Dimensions


Single compressor

Model	А	В	С	D	E	F	G	Н	J	К	L
SCWF120EV	2713	1380	1996	2050	1100	381	260	250	600	260	381
SCWF140EV	2713	1380	1996	2050	1100	381	260	250	600	260	381
SCWF160EV	2713	1380	1996	2050	1100	381	260	250	600	260	381
SCWF190EV	2738	1500	2096	2050	1300	411	300	300	700	260	406
SCWF210EV	2970	1500	2096	2050	1300	411	300	300	700	300	411
SCWF240EV	2970	1500	2096	2050	1300	411	300	300	700	300	411

Dual compressor

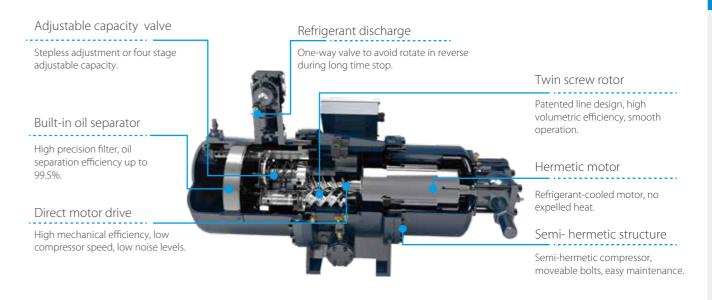
											Unit: mm
Model	A	В	С	D	Е	F	G	Н	J	K	L
SCWF260EV	4430	1610	2163	2850	1400	411	350	325	750	350	411
SCWF280EV	4430	1610	2163	2850	1400	411	350	325	750	350	411
SCWF300EV	4430	1610	2163	2850	1400	411	350	325	750	350	411
SCWF320EV	4430	1610	2163	2850	1400	411	350	325	750	350	411
SCWF350EV	4500	1700	2198	3350	1500	436	350	350	800	350	436
SCWF380EV	4500	1700	2198	3350	1500	436	350	350	800	350	436
SCWF410EV	4500	1700	2198	3350	1500	436	350	350	800	350	436
SCWF430EV	4500	1700	2198	3350	1500	436	350	350	800	350	436
SCWF450EV	4500	1700	2198	3350	1500	436	350	350	800	350	436
SCWF480EV	4500	1700	2198	3350	1500	436	350	350	800	350	436

Space Layout

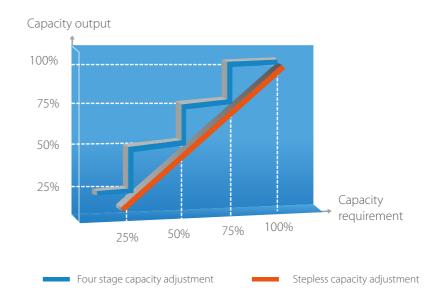
Unit: mm

Inverter Water Cooled Screw Chiller (SCWF***EV)

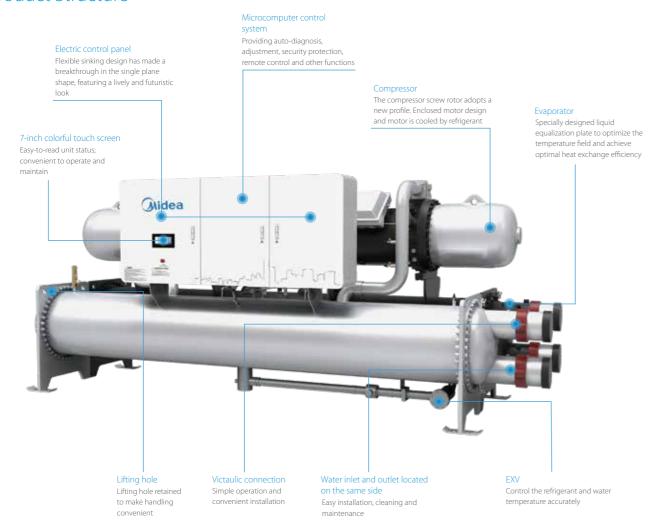
22


				01116.111111
Dimensions Model	S	Т	Z	Y
SCWF120EV~SCWF240EV	600	600	3200	1000
SCWF260EV ~SCWF480EV	600	600	4200	1000

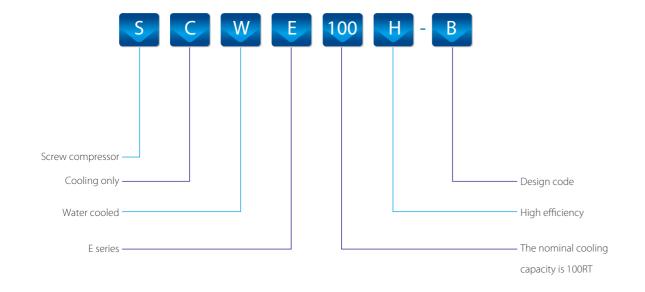
Z: Tube removal space for either end.


Advanced Twin-rotor Screw Compressor

- The product adopts a semi-hermetic twin-rotor screw compressor. Compared with open structure, it has the advantages of less refrigerant leakage, high transmission efficiency and no heat dissipation in the equipment room.
- The screw rotor adopts the profile design undergoing the optimized compression process to ensure the compressor has excellent volumetric efficiency and low leakage. At the same time, the twin-screw rotor adopts five teeth to six teeth asymmetric design, machining accuracy up to micron level and ensuring stable operation.
- Large capacity motor design, high motor efficiency. Suitable gas passage and clearance design is adopted inside the motor, and the refrigerant is fixed around the motor to ensure full cooling of the motor.
- * The compressor adopts the bearing of international famous brand SKF, which has a long service life, ensuring that the continuous operation time of the chiller is at least 50000h.



Stepless Capacity Adjustment


The capacity adjustment system consists of capacity adjust slide valve, solenoid valve and oil pressure piston.

Product Structure

Nomenclature

Specifications

Model		SCWE	90H-B	100H-B	110H-B	130H-B	150H-B	170H-B	200H-B	210H-B	230H-B	220H-B	240H-B	260H-B	300H-B	350H-B	390H-B	430H-B	470H-B
Cooling	nacity	RT	86.87	94.07	106.9	130.3	148.9	171.1	194.4	213.9	233.3	224.5	243.1	255.8	297.6	343.1	388.5	427.5	466.5
Cooling ca	apacity	kW	305.4	330.7	376.0	458.2	523.6	601.6	683.6	752.0	820.4	789.5	854.8	899.4	1046	1206	1366	1503	1640
Power inpu	ut	kW	52.32	57.20	65.14	79.41	87.65	100.6	114.2	125.2	137.0	132.1	142.9	150.5	174.6	201.3	228.5	248.1	271.3
COP		W/W	5.838	5.783	5.772	5.771	5.974	5.982	5.985	6.006	5.987	5.974	5.980	5.987	5.991	5.995	5.978	6.060	6.045
IPLV		W/W	7.425	7.695	7.689	7.256	7.501	7.720	7.676	8.100	8.186	7.895	7.822	7.872	7.762	7.908	7.994	8.423	8.504
		Qty	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
Compresso	or	Туре							Sem	ni-hermet	tic screw	compres	sor						
		Starting method								V	Vye-Delta	1							
Capacity ac	djust range										Stepless								
	Туре	/									R134a								
Refrigerant	Charge amount	kg	78	82	90	100	120	130	140	155	170	210	230	230	245	282	300	330	350
Power sup	pply									380)V-3Ph-50)Hz							
Data d	ont		00.7	00.5	110	1	151.	172	107.	21.5	226	1#: 95.5	1#: 95.3	1#: 108.5	1#: 150.8	1#: 150.8	1#: 197.3	1#: 214.1	1#: 234.2
Rated curre	ent	A	90.3	98.8	112.5	137.1	151.3	173.6	197.2	216.2	236.6	2#: 132.7	2#: 151.4	2#: 151.2	2#: 150.8	2#: 196.7	2#: 197.3	2#: 214.1	2#: 234.2
Marri	ting -		12.5	15.	17.	200	22-	3.5-	201	22-	262	1#: 154.6	1#: 154.6	1#: 176.9	1#: 235.0	1#: 235.0	1#: 301.0	1#: 335.0	1#: 369.0
ıvıax. opera	ating current	A	136.6	154.6	176.9	208.0	235.0	260.0	301.0	335.0	369.0	2#: 208.0	2#: 235.0	2#: 235.0	2#: 235.0	2#: 301.0	2#: 301.0	2#: 335.0	2#: 369.0
Ctoutin	rrop*		2=-	24-				-	2=-		2:-	1#: 315	1#: 315	1#: 378	1#: 479	1#: 479	1#: 650	1#: 683	1#: 845
Starting cu	arent	A	258	315	378	415	479	506	650	683	845	2#: 415	2#: 479	2#: 479	2#: 479	2#: 650	2#: 650	2#: 683	2#: 845
	Water flow	m³/h	47.19	51.1	58.09	70.80	80.90	92.95	105.6	116.2	126.8	122.0	132.1	139.0	161.6	186.4	211.0	232.2	253.4
Evaporator	Pressure drop	kPa	33.2	30.3	38.1	45.8	39.4	50.4	56.1	48.5	56.6	56.6	57.7	63.2	66.4	78.5	78.6	74.6	78.3
	Water pipe connection	mm					DN1	50							DN200)			
	Water flow	m³/h	59.22	64.21	73.01	88.99	101.2	116.3	132.1	145.2	158.5	152.6	165.2	178.3	202.1	233.1	264.0	290.0	316.5
Condenser	Pressure drop	kPa	43.8	44.4	44.2	56.9	57.3	57.3	55.9	55.5	56.5	29.3	31.1	34.1	34.0	50.4	54.1	53.6	58.4
	Water pipe connection	mm			DN	N150							DN	200	-	-			
	Length	mm	2710	2710	2710	2710	2710	2710	2750	2750	2750	4250	4250	4250	4410	4530	4530	4750	4750
	Width	mm	1200	1200	1200	1200	1200	1200	1400	1400	1400	1500	1500	1500	1500	1600	1600	1600	1600
dimensions	Height	mm	1740	1790	1790	1813	1813	1942	1940	2090	2090	2180	2230	2230	2230	2290	2290	2340	2340
Shipping w	veight	kg	2148	2182	2210	2675	2750	2540	3130	3320	3375	4600	4700	4710	5225	5787	5975	6360	6480
Running w	/eight	kg	2280	2321	2354	2825	2917	2714	3345	3553	3614	4955	5069	5079	5632	6276	6502	6935	7078

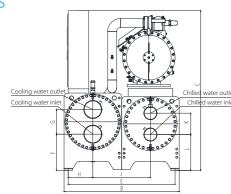
26

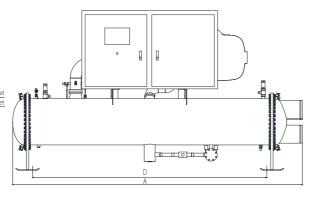
Flooded Water Cooled Screw Chiller (SCWE***H-B)

^{1.} Performance and efficiency are based on AHRI 550/590-2018.

 $Evaporator\ conditions:\ water\ inlet=54°F\ (12.22°C),\ water\ outlet=44°F\ (6.67°C),\ fouling\ factor=0.00010h-ft2-°F/Btu\ (0.0176m2.\ °C/kW);$

Condenser conditions: water inlet=85°F (29.44°C), water outlet=94.3°F (34.61°C), fouling factor=0.00025h-ft2-°F/Btu (0.0440m2. °C/kW).

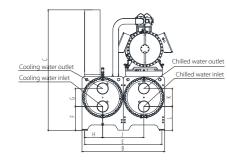

^{2.} The design's max working pressure for both the evaporator and condenser are 1.0MPa, but higher pressure can be customized if required.

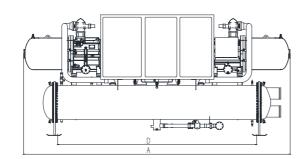

^{3.} As a result of the continuous improvement of the product, the above parameters may be changed, please refer to the software selection and the actual product.

28

Dimensions

Single compressor





		m

Model	А	В	С	D	Е	F	G	Н	J	K	L
SCWE90H-B	2710	1200	1740	2050	1100	411	260	250	600	260	411
SCWE100H-B	2710	1200	1790	2050	1100	411	260	250	600	260	411
SCWE110H-B	2710	1200	1790	2050	1100	411	260	250	600	260	411
SCWE130H-B	2710	1200	1813	2050	1100	411	260	250	600	260	411
SCWE150H-B	2710	1200	1813	2050	1100	411	260	250	600	260	411
SCWE170H-B	2710	1200	1942	2050	1100	411	260	250	600	260	411
SCWE200H-B	2750	1400	1940	2050	1300	441	300	300	700	260	436
SCWE210H-B	2750	1400	2090	2050	1300	441	300	300	700	260	436
SCWE230H-B	2750	1400	2090	2050	1300	441	300	300	700	260	436

Dual compressor

Unit: mm

Model	А	В	С	D	E	F	G	Н	J	K	L
SCWE220H-B	4250	1500	2180	2850	1400	443	350	325	750	350	443
SCWE240H-B	4250	1500	2230	2850	1400	443	350	325	750	350	443
SCWE260H-B	4250	1500	2230	2850	1400	443	350	325	750	350	443
SCWE300H-B	4410	1500	2230	2850	1400	443	350	325	750	350	443
SCWE350H-B	4530	1600	2290	3350	1500	468	350	350	800	350	468
SCWE390H-B	4530	1600	2290	3350	1500	468	350	350	800	350	468
SCWE430H-B	4750	1600	2340	3350	1500	468	350	350	800	350	468
SCWE470H-B	4750	1600	2340	3350	1500	468	350	350	800	350	468

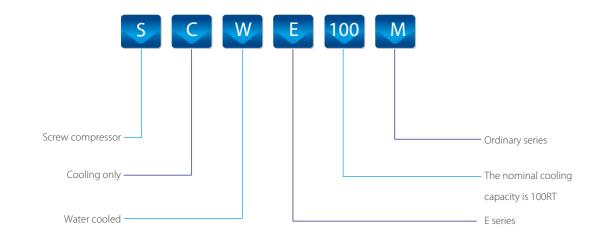
Space Layout

Unit: mm

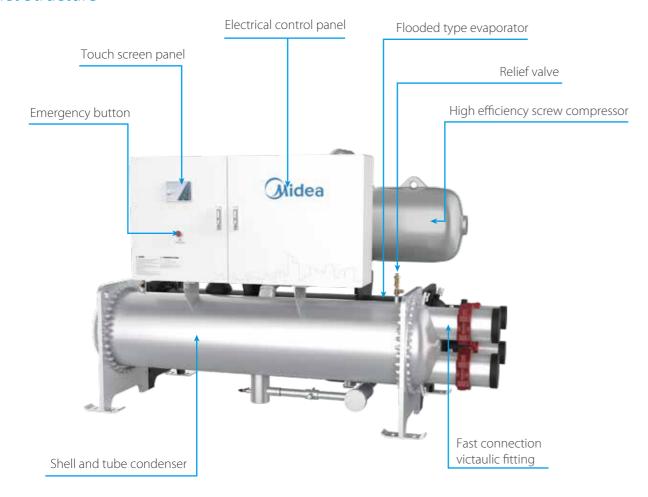
				Offic. ITIIII
Dimensions Model	S	Т	Z	Y
SCWE90H-B~SCWE230H-B	600	600	2400	1000
SCWE220H-B~SCWE300H-B	600	600	3200	1000
SCWE350H-B~SCWE470H-B	600	600	3700	1000

Z: Tube removal space for either end.

Advanced Twin-rotor Screw Compressor


- * The product adopts a semi-hermetic twin-rotor screw compressor. Compared with open structure, it has the advantages of less refrigerant leakage, high transmission efficiency and no heat dissipation in the equipment room.
- The screw rotor adopts the profile design undergoing the optimized compression process to ensure the compressor has excellent volumetric efficiency and low leakage. At the same time, the twin-screw rotor adopts five teeth to six teeth asymmetric design, machining accuracy up to micron level and ensuring stable operation.
- Large capacity motor design, high motor efficiency. Suitable gas passage and clearance design is adopted inside the motor, and the refrigerant is fixed around the motor to ensure full cooling of the motor.

Stepless Capacity Adjustment


The capacity adjustment system consists of capacity adjust slide valve, solenoid valve and oil pressure piston.

Nomenclature

Product Structure

Specifications

Model			SCWE100M	SCWE130M	SCWE150M	SCWE180M	SCWE200M	SCWE230M	SCWE250M
Cooling coassi		RT	95.85	124.1	152.2	178.5	203.1	227.1	251.1
Cooling capacity		kW	337.0	436.3	535.3	627.7	714.1	798.6	882.7
Power input		kW	59.75	76.68	93.61	109.9	126.9	142.3	154.3
COP		W/W	5.640	5.690	5.718	5.710	5.628	5.613	5.720
IPLV		W/W	6.517	6.562	6.953	6.951	7.251	6.847	6.954
		Qty	1	1	1	1	1	1	1
Compressor		Туре			Semi-he	ermetic screw com	pressor		
		Starting method				Wye-Delta			
Capacity adjust ra	nge	cariou				Stepless			
Dofrie	Туре	/				R134a			
Refrigerant	Charge amount	kg	100	110	140	140	150	160	170
Power supply						380V-3Ph-50Hz			
Rated current		А	103.2	132.4	161.6	189.8	219.1	245.6	266.5
Max. operating cu	ırrent	А	154.6	208.0	235.0	260.0	301.0	369.0	382.8
Starting current		А	315.0	415.0	479.0	506	650.0	845.0	753.3
	Water flow	m³/h	52.07	67.41	82.70	97.0	110.3	123.4	136.4
Evaporator	Pressure drop	kPa	37.5	43.2	38.9	51.7	55.9	49.6	45.1
	Water pipe connection	mm	150	150	150	150	150	200	200
	Water flow	m³/h	65.65	84.90	104.1	122.1	139.2	155.7	171.6
Condenser	Pressure drop	kPa	53.0	58.3	60.4	62.6	61.7	63.2	65.4
	Water pipe connection	mm	150	150	150	150	200	200	200
	Length	mm	2713	2713	2713	2713	2738	2970	2970
Unit dimensions	Width	mm	1200	1200	1200	1200	1400	1400	1400
	Height	mm	1796	1809	1809	1986	1946	2184	2184
Shipping weight		kg	2170	2190	2780	2660	3140	3341	3452
Running weight		kg	2300 2340 2940 2830 3360 3581 3						

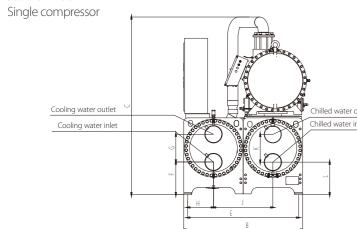
32

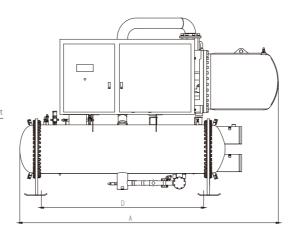
Flooded Water Cooled Screw Chiller (SCWE***M)

Model	·		SCWE300M	SCWE340M	SCWE370M	SCWE400M	SCWE460M	SCWE510M	SCWE600M
Cliit-		RT	297.6	338.4	366.6	397.4	456.8	502.0	591.6
Cooling capacity		kW	1047	1190	1289	1397	1606	1765	2080
Power input		kW	185.8	205.3	221.7	240.8	278.6	304.9	360.9
COP		W/W	5.634	5.796	5.813	5.802	5.793	5.788	5.764
IPLV		W/W	6.912	7.538	7.531	7.628	7.467	7.493	7.429
		Qty	1	2	2	2	2	2	2
Compressor		Type			Semi-he	ermetic screw com	pressor		
		Starting method				Wye-Delta			
Capacity adjust r	ange					Stepless			
D. C	Туре	/				R134a			
Refrigerant	Charge amount	kg	245	330	330	340	400	400	520
Power supply						380V-3Ph-50Hz			
Rated current		А	320.7	153.8 / 200.6	166.2 / 216.7	207.9 / 207.9	239.3 / 239.3	263.2 / 263.2	311.5 / 311.5
Max. operating c	urrent	А	396.8	235.0 / 301.0	235.0 / 301.0	301.0 / 301.0	369.0 / 369.0	382.8 / 382.8	396.8 / 396.8
Starting current		А	888.3	479 / 650	479 / 650	650 / 650	845 / 845	753.3 / 753.3	888.3 / 888.3
	Water flow	m³/h	161.7	183.8	199.1	215.9	248.1	272.7	321.4
Evaporator	Pressure drop	kPa	50.1	64.7	74.7	64.6	74.0	77.6	80.3
	Water pipe connection	mm	200	200	200	200	200	200	250
	Water flow	m³/h	203.9	230.9	250.1	271.1	311.7	342.6	404.0
Condenser	Pressure drop	kPa	68.2	69.0	79.7	77.6	77.1	79.7	79.9
	Water pipe connection	mm	200	200	200	200	200	200	250
	Length	mm	3265	4650	4650	4650	5180	5180	5950
Unit dimensions	Width	mm	1500	1500	1500	1500	1600	1600	2000
	Height	mm	2256	2290	2290	2290	2390	2390	2550
Shipping weight		kg	4266	6232	6232	6415	7075	7318	9326
Running weight		kg	4576	6872	6872	7125	7865	8158	10866

^{1.} Performance and efficiency are based on AHRI 550/590-2018.

Evaporator conditions: water inlet=54°F (12.22°C), water outlet=44°F (6.67°C), fouling factor=0.00010h-ft2-°F/Btu (0.0176m2. °C/kW); Condenser conditions: water inlet=85°F (29.44°C), water outlet=94.3°F (34.61°C), fouling factor=0.00025h-ft2-°F/Btu (0.0440m2. °C/kW).

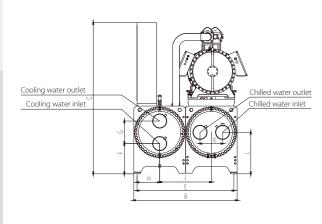

^{2.} The design's max working pressure for both the evaporator and condenser are 1.0MPa, but higher pressure can be customized if required.

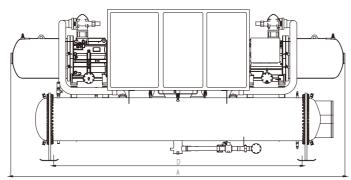

^{3.} As a result of the continuous improvement of the product, the above parameters may be changed, please refer to the software selection and the actual product.

34

Dimensions

380V-3Ph-50Hz





Į	Jnit:	mm
,		

Model	А	В	С	D	E	F	G	Н	J	K	L
SCWE100M	2713	1200	1796	2050	1100	381	260	250	600	260	381
SCWE130M	2713	1200	1809	2050	1100	381	260	250	600	260	381
SCWE150M	2713	1200	1809	2050	1100	381	260	250	600	260	381
SCWE180M	2713	1200	1986	2050	1100	381	260	250	600	260	381
SCWE200M	2738	1400	1946	2050	1300	461	260	300	700	260	431
SCWE230M	2970	1400	2184	2050	1300	411	300	300	700	260	431
SCWE250M	2970	1400	2184	2050	1300	411	300	300	700	260	431
SCWE300M	3265	1500	2256	2050	1400	413	300	325	750	350	413

Dual compressor

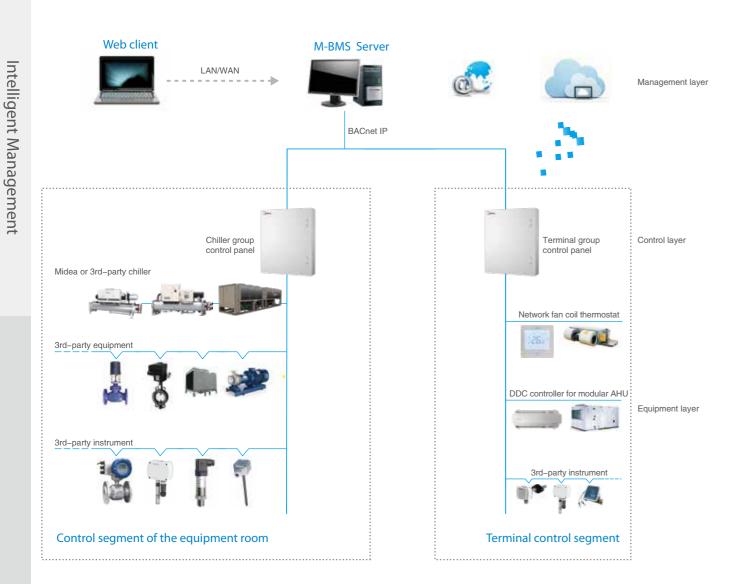
Unit: mm

Model	А	В	С	D	Е	F	G	Н	J	К	L
SCWE340M	4650	1500	2290	3850	1400	413	300	325	750	350	588
SCWE370M	4650	1500	2290	3850	1400	443	350	325	750	350	588
SCWE400M	4650	1500	2290	3850	1400	443	350	325	750	350	588
SCWE460M	5180	1600	2390	3850	1500	436	350	350	800	350	611
SCWE510M	5180	1600	2390	3850	1500	436	350	350	800	350	611
SCWE600M	5950	2000	2550	3780	1800	498	470	400	1000	400	733

Unit: mm

Dimensions	S	Т	Z	Y
SCWE100M~SCWE300M	600	600	3200	1000
SCWE340M ~SCWE600M	600	600	4200	1000

Z: Tube removal space for either end.


Options

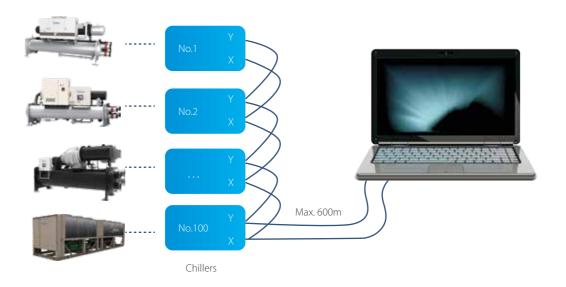
Items	Standard	Optional		
Power supply	380V-3Ph-50Hz	400/415V-3Ph-50Hz, 380/440/460V-3Ph-60Hz		
Water inlet/outlet connection	Victaulic	Flange		
High pressure water box	1.0MPa	1.6MPa, 2.0MPa		
Anti-vibration	Rubber pad	Spring isolator		
Communication protocol	Modbus-RTU (RS485)	BACnet IP, BACnet MS/TP (RJ-45 port)		
High leaving condenser water temperature	45°C	Up to 55°C		
Insulation	20mm	40mm		
Witness performance testing	X	√		
Remote control & monitor panel	×	√		
Midea Chiller Plant Control	×	√		
Midea Smart Cloud platform	X	√		
QuickView	X	√		
Tube automatic cleaning system	×	√		

Note: For other options, please contact with our engineers.

Midea Chiller Plant Control

Midea Chiller Plant Control is a group control system for commercial air conditioning that includes air conditioners, water pumps, cooling towers, terminals and related ancillary equipment (including valves, sensors etc.) as the underlying control objects. Based on a powerful control logic program and communication network, it establishes a 3-layer control framework that integrates the equipment, control and management layers. Midea Chiller Plant Control contains a unique operation module from Midea that is designed to save energy, so in addition to automated stable operations for the various devices, this product also improves and optimizes user management capabilities, reduces labour costs, boosts operational efficiency and lowers the overall energy consumption for commercial air conditioning.

Midea Smart Cloud platform


Midea has built a flawless internet-based remote monitoring system, which provides customers with outstanding cloud service via advanced cloud service technologies and the internet. Customers can connect Midea air conditioner to the global remote monitoring system through Midea's IMU smart data acquisition terminal, so that professionals can help the customer to implement remote

fault diagnosis, analysis and receive early warning alarms for failures, ensuring the equipment's optimal operation. Customers authorized by Midea can use a Web browser to view the real-time monitoring data of the air conditioning system.

QuickView

Midea's QuickView smart software control system is a type of smart software specially developed by Midea. It features high real-time efficiency, stability, reliability, a high degree of visualization and strong scalability. It can implement a wide variety of scenarios such as real-time data monitoring of units, unit equipment management, remote control, curve display, data storage, alarm query, fault diagnosis, uploading data to the cloud and external data analysis, greatly improving the unit's operation management efficiency and reducing the human input and operation and maintenance costs.

2018 Russia World Cup Stadiums Nizhny Novgorod Stadium

- © City: Nizhny Novgorod

Volgograd Arena

- © City: Volgograd

Cosmos Arena

- © City: Samara

The 27th Southeast Asian Games Stadium

- © Country: Myanmar
- Ocity: Nay Pyi Taw
- Outdoor Units: Water Cooled Screw Chiller
- ☐ Indoor Units: MAHU
- ⊙ Total Capacity: 4,000RT

Pullman Hotel & Resort Mandalika (Five Star)

- © Country: Indonesia
- © City: Lombok
- Outdoor Units: Water Cooled Screw Chiller
- ☐ Indoor Units: FCU & AHU

40

Butovo Mall

- Country: Russia
- © City: Moscow
- Outdoor Units: Water Cooled Screw Chiller
- ⊙ Total Capacity: 5,000kW
- © Completion Year: 2015

The Tier 1 Solar Product Manufacturing Plant-Seraphim

- Country: South Africa
- Ocity: Port Elizabeth
- Outdoor Units: Water Cooled Screw Chiller
- ⊚ Total Capacity: 940RT

The Prime Minister Office Building

- Country: Tajikistan
- O City: Dushanbe
- Outdoor Units: Water Cooled Screw Chiller
- ☐ Indoor Units: FCU & AHU
- ⊙ Total Capacity: 2,880kW

Top Glove in Malaysia

- Country: Malaysia
- O City: Klang
- Outdoor Units: Water Cooled Screw Chiller
- ☐ Indoor Units: FCU & AHU
- ⊙ Total Capacity: 3,400RT

42

The University of Georgia

- Country: Georgia
- © City: Tbilisi
- Outdoor Units: Water Cooled Screw Chiller
- ☐ Indoor Units: FCU
- ⊙ Total Capacity: 1,200kW

